iterated codes - significado y definición. Qué es iterated codes
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es iterated codes - definición

METHOD ALLOWING THE CONSTRUCTION OF SELF-SIMILAR FRACTALS
Iterated function systems; Iterated Function System; Iterated Function Systems
  • Construction of an IFS by the [[chaos game]] (animated)
  • Apophysis]] software and rendered by the [[Electric Sheep]].
  • IFS "tree" constructed with non-linear function Julia
  • [[Barnsley's fern]], an early IFS
  • IFS being made with two functions.
  • [[Menger sponge]], a 3-Dimensional IFS.
  • [[Sierpinski triangle]] created using IFS (colored to illustrate self-similar structure)

Iterated Function System         
<graphics> (IFS) A class of fractals that yield natural-looking forms like ferns or snowflakes. Iterated Function Systems use a very easy transformation that is done recursively. (1998-04-04)
Iterated function system         
In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry.
List of airline codes         
WIKIMEDIA LIST ARTICLE
List of airline call signs; List of airline codes header; List of airline codes footer; Airline codes-All
This is a list of all airline codes. The table lists the IATA airline designators, the ICAO airline designators and the airline call signs (telephony designator).

Wikipedia

Iterated function system

In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981.

IFS fractals, as they are normally called, can be of any number of dimensions, but are commonly computed and drawn in 2D. The fractal is made up of the union of several copies of itself, each copy being transformed by a function (hence "function system"). The canonical example is the Sierpiński triangle. The functions are normally contractive, which means they bring points closer together and make shapes smaller. Hence, the shape of an IFS fractal is made up of several possibly-overlapping smaller copies of itself, each of which is also made up of copies of itself, ad infinitum. This is the source of its self-similar fractal nature.